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recordings from ionic channels in the postsynaptic mem-
brane due to receptor binding in both neuromuscular junc-The principles and practice of a many-body Brownian dynamics

algorithm of reversible binding to a static three-dimensional recep- tions [7] and the central nervous system [8, 9]. The process
tor array are presented. The mixed boundary conditions at the array begins by exocytosis of neurotransmitters from a vesicle(s)
are compared with single-particle direct propagation using a novel in the presynaptic membrane, their diffusion in the synapticoperator discretization. The many-body aspects are checked against

gap, reversible binding to receptors (each composed ofprevious one-dimensional Brownian simulations. The long-time be-
two binding sites), and the opening of ionic channels inhavior agrees with expected analytic solutions. Q 1997 Academic Press

response to the binding event.
In the model under consideration, N transmitter mole-

I. INTRODUCTION cules (noninteracting point particles) are initially at one
point on the inner face of the ‘‘ceiling’’ of the simulation

Signalling between cells in a living organism is vital for box (Fig. 1). They diffuse (with a diffusion coefficient D)
the growth, differentiation, and functioning of an ensemble between the ceiling and the ‘‘floor,’’ on which a static array
of cells as a single organism. An important mechanism for of binding sites is located. The particles bind reversibly to
conveying information between cells involves the diffusion the sites subject to the restriction that any given site may
of small ligands and their binding to cell-membrane-bound bind only one particle. We wish to find the probability that
receptors [1]. Known examples of such ligands are hor- a given site is in the bound state by time t after particle re-
mones and neurotransmitters. lease.

The theoretical study of this problem yielded a simple It is evident that the question posed has no simple ana-
analytical approximation for the steady-state, irreversible lytic solution, and one needs recourse to simulation tech-
binding rate coefficient to receptors distributed on the sur- niques. In the present work we will describe an efficient
face of a (spherical, planar) membrane [1–3]. This is an numerical algorithm providing an accurate approximation
interesting solution to a problem which, unfortunately, falls to the many-body diffusion equation with the mixed
short of describing even the simplest case of receptor ac- boundary conditions which depict reversible binding to
tion. First, the ligands diffuse in the liquid phase in between sites on the ‘‘floor’’ of the simulation box. We shall concen-
membranes of adjacent cells and not in an infinite volume. trate on the (nontrivial) numerical aspects of the problem
Such geometric restrictions could have important conse- by extending our earlier one-dimensional many-body
quences for biological reactions. Second, a detailed time Brownian dynamics (BD) algorithm for reversible binding
evolution is required, not only steady-state properties. Fi- [10–13]. To date, such a problem has been addressed either
nally, the binding must be reversible if the transduced by chemical–kinetic rate equations [14, 15], by solving bulk
signal is ever to terminate. The study of reversible diffusion (mean-field) diffusion equations [16, 17], or by Monte-
influenced reactions [4, 5] is more complicated than that Carlo simulations [18–20], apparently less accurate than
of irreversible reactions due to the convoluted nature of the BD algorithm described below.
the dissociation–recombination events and to correlations Two types of numerical methodologies may be consid-
between particles induced by the ability of a site to bind ered, corresponding to the duality between Fick’s and
just a single particle at a time. Langevin’s equations [21]. The first is a direct propagation

The basic model of receptor action we suggest to study (DP) of the partial differential equations governing the
is a simplified representation of neurotransmitter release time-evolution of the particle spatial distribution [22]. Un-
into the synaptic cleft [6] and its reversible binding to less the particles are independent, this joint probability

density is a function of 3N coordinates [11, 23], whicha receptor-array on the postsynaptic membrane (Fig. 1).
Electrophysiological methods have produced quantitative makes its time-propagation prohibitive except for a very
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FIG. 1. The receptor-array geometry.

small number of particles (perhaps just one). Since the ple, an elementary particle hop along its diffusive trajectory
may take 1 nanosecond, while one is monitoring processesprobability density is represented on a grid, the method is

also limited to rather simple geometries which do not re- occurring, as in the neurotransmitter case, in the millisec-
ond to second range. A trajectory of over 1010 steps, whilequire too many grid points.

We present a three-dimensional DP routine as a check quite common in nature, can be computationally expen-
sive. In addition, the computation quality may deteriorateon the simulation procedure described below. It is applied

to a single receptor with mixed (reversible-reflective) by the accumulation of small errors over that many steps.
Finally, part of the computational effort might be in vain.boundary conditions on the ‘‘floor’’ of the diffusion box.

Such boundary conditions are notoriously difficult to han- For example, one knows that the solution for free diffusion
is a gaussian which widens ad infinitum [21]. Any computa-dle analytically [24, 25] but are nevertheless important for

problems other than receptor binding, such as chemical tional effort that goes into the calculation of the free diffu-
sion part of the solution teaches us nothing new.reactions at microelectrodes [25, 26]. Time propagation is

achieved, as before, using Chebyshev polynomials [22]. Brownian dynamics (BD) is a method that circumvents
these problems and allows using large time-steps [28, 29].This allows reaching long times with high accuracy.

When many particles and complex geometries are in- The philosophy behind BD is to apply random numbers
from a locally valid analytical solution. Thus a free diffu-volved, there is no alternative to simulation techniques. In

these methods, each particle is moved every time-step to sion trajectory is generated by gaussian rather than uniform
random numbers [30]. In this simple case the time-step maygenerate a ‘‘stochastic trajectory’’ [21]. Averaging over

many trajectories generates the probability density func- be arbitrarily large without loss in accuracy. The situation is
more complicated if one needs to take into account long-tion as obtained (when feasible) by a single DP run, but

with statistical noise, the penalty paid for saving huge range interactions or complicated (e.g., reactive) bound-
ary conditions.amounts of computer memory required for representing

3N-dimensional functions on discrete grids. This penalty For describing the kinetics near a binding site, one might
take a random step from the solution of the semi-infiniteis worth paying, since it makes the solution feasible.

There are two types of stochastic simulation algorithms. one-dimensional binding problem, followed by a gaussian
step in each parallel direction. The approximation is then inThe simple-minded Monte-Carlo algorithm implements a

lattice random-walk. For free diffusion, each particle is the assumption that the parallel and perpendicular motions
are independent. This evidently restricts the time-step nearmoved with equal probabilities in the six canonical direc-

tions. At a reversible site, the particle may enter or exit the site, but it is nevertheless larger than the elementary
Monte-Carlo step. An excellent discussion of these princi-with probabilities related to the binding and unbinding rate

coefficients [18, 27]. A drawback is that such a procedure ples is given by Lamm and Schulten [29]. Their application
allowed Northrup, McCammon, and collaborators [31–33]requires sticking with the small elementary time-step

throughout the simulation. Biological processes occur on to simulate several problems of biological interest, includ-
ing the cell-bound receptor problem discussed above [33].timescales varying from femtoseconds to days. For exam-
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Their BD simulation of steady-state rate coefficients has II. THE BROWNIAN RECEPTOR-ARRAY ALGORITHM
been generalized to time-dependent rate-coefficients [34].

A. Problem DefinitionThe above work concentrated on irreversible reactions,
with two consequences. First, in the absence of any restric- We have developed a computer program for simulating
tion on the number of bound particles, there are no correla- many-particle reversible binding to the receptor array
tions between particles and it suffices to solve for single- shown in Fig. 1. The system consists of two parallel planes
particle diffusion [31–34]. Despite the introduction of Ref. representing inert and impermeable membranes. Their
[29], DP is the method of choice for single-particle diffusion separation (in the z direction) is Lz . The space between
even in three dimensions, as we demonstrate below. Thus the membranes is filled with liquid in which noninteracting,
for the irreversible problems BD was actually inessential. point particles diffuse (diffusion coefficient D). The ‘‘floor’’
In contrast, reversible binding to saturable sites is a coupled (bottom plane) contains a rectangular ‘‘receptor array’’ of
many-body problem even if the particles are otherwise dimensions Lx and Ly (Fig. 2). The origin of the coordinate
non-interacting. In such cases BD becomes an indispens- system is in the center of this rectangle. The array consists
able tool. of M rectangles of dimensions l9x by l9y , where l9x # l9y . Thus

The approximation behind our reversible many-body Lx Ly 5 Ml9xl9y . Each rectangle contains a central, square
BD application [10–13] involves a separation of time scales binding site (length l # min(l9x , l9y) , area a 5 l2) with unreac-
between the fast Brownian motion and the slower onset tive margins around it. Regions not covered by binding
of particle–particle correlations, induced by the reversible sites (the margins, top plane, etc.) are reflective towards
binding sites. Thus a particle is randomly chosen and the moving particles. Particles hitting such regions bounce
moved for a finite time interval, Dt, assuming that during back into the simulation box.
this time the remaining N 2 1 particles are immobile. This A site may bind at most one particle at a time. When a
procedure is repeated N times and the clock advanced one particle touches its surface, binding may occur with a rate
Dt unit. After a few Dt units such a simulation converges coefficient akr (kr is the reactive flux perpendicular to the
to the result obtained with a smaller Dt [11]. area a), provided that it is unoccupied. If a particle is

The second difference between reversible and irrevers- bound, the surface of the trap becomes inert (which is
ible binding is that the latter allows the usage of the ‘‘rejec- equivalent to setting kr 5 0). In the present version, parti-
tion method’’ for obtaining random numbers from a given cles have no volume and do not interact, except for the
distribution (Ref. [30, Section 3]), namely, from the solu- case of an occupied trap, when a bound particle prevents
tion of the diffusion equation near a binding site. The other particles from binding. The bound particle may in
rejection method employs a ‘‘comparison function’’ which turn dissociate to the surface with a rate coefficient kd .
is everywhere above the given distribution. A first uniform We assume that after particle dissociation it has equal
random number generates a random number from the probability of being located at any point on the site’s
comparison function while a second one accepts or rejects surface.
this choice based on the ratio of the two functions. For Each binding site may represent a distinct (single-site)
irreversible binding, the reflective solution (zero recombi- receptor or else the sites are paired-off and each pair is
nation), which is everywhere above the reactive solution, a receptor (double-site receptors). While it is simpler to
is a viable comparison function [29, 31–33]. In contrast, analyze single-site receptors theoretically, the double-site
the reversible solution may be either smaller or larger than receptors approximate more closely the experimental situ-
the reflective solution since a trap can release a particle ation for many synaptic receptors [6].
after long times. Here the reflective solution is not a valid The receptor array may be enclosed within four reflec-
comparison function and the rejection method cannot be tive walls (bold lines, Fig. 2, 1W case). These prevent
adopted. One recourses to the straightforward method of particles from escaping from the ‘‘active zone’’ above
inverting indefinite integrals. the array. In the case without the walls (2W) particles

The present publication reports a first application of BD still cannot pass the top and bottom planes, so they
for many-particle reversible reactions in three dimensions spread between two infinite impermeable planes. This
for the receptor-array of Fig. 1. It also describes a finite- can be simulated as easily as the 1W case, since Brownian
differencing implementation for mixed boundary condi- dynamics is an off-grid method which keeps in memory
tions in constructing the spatial operator for a single-parti- only particle coordinates. The extent of the physical space
cle DP calculation (Section IV). The two computations are is immaterial.
compared. This is one in a series of tests reported in Section Initially, the N particles are released from some point
V, demonstrating the accuracy and reliability of our algo- within the simulation box. For t . 0 the particles move

randomly (diffuse) in the three-dimensional space betweenrithm. Additional checks include one-dimensional BD [13]
and analytic asymptotic behavior. the two planes. When a particle hits a plane it is reflected
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back into the diffusion space unless it hits the surface area
of an unoccupied binding site, as described above. Thus at
any time instant, particle i is either free within the diffusion
space or bound to site j. The coordinates (xi(t), yi(t), zi(t)),
i 5 1 ? ? ? N, provide a complete description of the many-
body dynamics. The crux of the algorithm involves genera-
tion of these coordinates for such a stochastic trajectory
using rules for particle motion corresponding as closely as
possible to the solution of the diffusion equation for the
given geometry and boundary conditions.

B. The Way Particles Move

For every single elementary step we choose randomly
a particle to move. This particle, initially at (x0 , y0 , z0), is
moved along the three Cartesian coordinates, x, y, and z.
The endpoint of its move is determined by three random
numbers using an algorithm which depends on the time-
step and geometry as described below. Subsequently an-
other particle is picked randomly and moved by the same
algorithm. After N elementary moves (i.e., after each parti-
cle moves on the average once) the clock is advanced by
one time-step unit.

The procedure for moving a particle determines the ac-
curacy and efficiency of the algorithm. Efficiency means
being able to take large time-steps while accuracy requires

FIG. 2. The geometry of the ‘‘floor’’ of the simulation box. The figure
small time-steps, particularly near the receptor array. It is shows a 2 3 4 array of square receptors (gray). The boundary of the
the presence of this array which causes the many-particle array (thick line) is composed of impermeable walls (perpendicular to

the floor) in the 1W case. In the 2W case, the floor (and ceiling) continuetrajectory to deviate from the simple solution of free-diffu-
indefinitely in both directions. Here l 9x 5 l 9y 5 l 9.sion (in the presence of reflecting walls) for independent

particles.
The strategy of the present algorithm involves a choice

of both time-steps and random numbers. We use large
1. Large time-step free diffusion. For particles furthesttime-steps (DT) far from the array and smaller steps (Dt)

away from the trapscloser by. Far from the array the dynamics approaches
free-diffusion. There we use three independent gaussian

z0 . ddiff ; adiff Ï2D DT,random numbers namely, random numbers out of a
gaussian distribution with a width corresponding to the

orappropriate time-step. Closer to the array the possibility
of binding need be taken into account. We assume that

ux0u . Lx/2 1 ddiffbinding/unbinding occurs only perpendicular to the site’s
surface, i.e., for a move in the z-direction. Thus, while in

orthe x and y directions gaussian random numbers are ap-
uy0u . Ly/2 1 ddiff , (1)plied, the z-motion is instigated by a random number out

of the analytic solution in the presence of a reversible trap
[10, 35, 36]. the large time-step, DT, is implemented. The last two lines

in Eq. (1) are only relevant in the 2W case, for particlesWhatever the time-step, a relocated particle may find
itself across an impermeable plane. Such planes include outside the dashed rectangle in Fig. 2. We find that

adiff 5 7 is sufficiently large to guarantee accuracy (Sectionthe upper membrane (‘‘ceiling’’), the lower membrane
(‘‘floor’’) outside the receptor array (in the 2W case), the V below).

The free diffusion mechanism is applied by selectingreflective walls (in the 1W case), the unreactive margins
of the binding sites and any occupied site. In all such cases three random numbers from a gaussian distribution of

width Ï4D DT. For free diffusion in a given coordinate,the particle is reflected back from the impermeable plane.
Following a choice for the large time-step, DT, we distin- e.g., z, the probability density p(z, t u z0) for a particle

initially at z0 to move to point z by time t isguish between the following four cases:
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Here int(z) is the integer part of z and we find (Sectionpfree(z, t u z0) 5 (4f Dt)21/2 e(z2z0)2
, (2)

V) as an optimal value arev 5 adiff 5 7.
The free diffusion mechanism is applied n times usingwhere we have defined

the short time-step value Dt, meaning that three random,
Ï4D D t wide gaussian numbers are generated for eachz ; z/Ï4Dt. (3)
of the n moves. To find zj we set t ; Dt in Eq. (5),
and similarly for the x and y directions. If, however,Since the area under a probability density function is uni-
during the small step k , n the particle crosses theformly distributed in [0, 1], given a uniformly distributed
outer boundary at ddiff , it executes the remaining time-random number, 0 # j # 1, the endpoint of the trajectory,
step, (n 2 k) Dt, in one move. If it crosses the innerzj , is calculated by setting t ; DT in
boundary at zrev the remaining steps are executed using
the algorithm below.j 5 Ezj

2y
pfree(z, t u z0) dz. (4)

3. Receptor affected move. This option applies to un-
bound particles located such that z0 , zrev and (x0 , y0 , 0)Therefore, one has
is on the surface of a vacant trap. The x and y motions are
executed using gaussian random numbers with the smallzj 2 z0 5 erf21(2j 2 1) ; jgauss , (5)
time-step Dt. The z motion is calculated using the following
procedure with t ; Dt.where t ; DT, erf(z) ; Ï4/f ez

0 exp(2z92) dz9 is the error
Denote by P(t u z0) the probability that a single particle,function, and jgauss is a gaussian random number. Given

initially a distance z0 from a reversible trap, will be bounda uniform deviate, j, there are more efficient ways for
by time t. In one-dimension and in the absence of particle–calculating a gaussian deviate than inverting an error func-
trap interactions [35]tion [30], which we apply. The same procedure is used to

move the particle along x and y.

2. Short time-step free diffusion. The second option ap-
P(t u z0) 5

kr

D
exp(2z2

0) [f(z0 1 e2) 2 f(z0 1 e1)], (9)plies for particles at an intermediate distance from the
nearest trap

where we have definedzrev , z0 , ddiff ,

ux0u 2 Lx/2 , ddiff , (6) D ; (k2
r 2 4Dkd)1/2,

uy0u 2 Ly/2 , ddiff , e6 ; (kr 6 D)t/Ï4Dt, (10)

where all three inequalities hold and f(z) ; exp(z2) erfc(z).

Erfc is the complementary error function which becomes
zrev 5 Hmin(l9x , l9y , Lz), (x0 , y0 , 0) vacant trap,

0, (x0 , y0 , 0) inert.
(7)

complex if D2 , 0.
The endpoint of a z-move is found by comparing a uni-

formly distributed random number, 0 , j , 1, withRoughly speaking, when z , ddiff a particle senses the
P(t u z0): if j , P(t u z0) the particle ends up in the trap,geometry of the receptor array, whereas if z , zrev and
whereas if j . P(t u z0) it remains unbound. In the firstthe trap is directly underneath the particle, it also senses
case, additional moves along x and y are not executed. Inthe binding reaction.
the latter case, the final distance from the trap surface, zj ,Particles at distances larger than zrev are far enough not
is found fromto feel the effect of binding to the traps, yet we do not

want them to ‘‘fly’’ above several traps or to jump from a
distance directly onto the trap surface within one free-

j 2 P(t u z0) 5 Ezj

0
p(z, t u z0) dz, (11)

diffusion time-step. Therefore, the time-step is limited to
Dt which is determined from

where p(z, t u z0) is the probability density for a particle
min(l9x , l9y) ; arev Ï2D Dt9, initially at z0 to be at point z after time t ; Dt, given a

reversible trap at z 5 0. For single-particle, one-dimen-
n 5 max(int(DT/Dt9), 1), (8)

sional diffusion with a reversible trap at the origin, this
function is known analytically [35],Dt ; DT/n.
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p(z, t u z0) 5 (4f Dt)21/2 The x and y coordinates of the released particle are
determined with the aid of four random numbers. Two

hexp[2 (z 2z0)2] 1 exp[2 (z 1 z0)2]j uniform random numbers are used to place the particle at
a randomly chosen point on the trap surface. This assumes

1
kr

2DD
exp[2 (z 1 z0)2] (12) that all points on the surface have equal binding properties.

Two gaussian random numbers are then used to move the
[(kr 2 D) f(z 1 z0 1 e2) particle from the release point in the x and y directions.

2 (kr 1 D) f(z 1 z0 1 e1)].
C. The Simplified Flow-Chart of the Main Loop

Consequently, given a uniform random number, j, the final A flow-chart implementing the above criteria for particle
value, zj ; Ï4Dtzj , is motion is shown in Fig. 3. This is the main loop of the

receptor-array algorithm, involving the motion of a single
j 2 P(t u z0) 5 [erf(zj 1 z0) 1 erf(zj 2 z0)]/2 particle. (A)–(U) correspond to the notations in the figure:

(A) We choose a particle randomly; then (B) we check
1

2kr

D
he2 [F2(zj 1 z0) 2 F2(z0)] (13)

how far it is from the nearest trap, Eq. (1).

(C) If it is sufficiently far for employing the long time-2 e1 [F1(zj 1 z0) 2 F1(z0)]j,
step free-diffusion mechanism, Eq. (1), we choose three
random gaussian numbers, jgauss , and a time-step DT, towhere we have defined
move the particle along x, y, and z. Here, the elementary
step is over and we return to stage A.

F6(z) 5 Ez

0
e2x2

f(x 1 e6) dx. (14)
(D) If check B fails, we set the short time-step value,

Dt, and initialize the counter (k 5 1, ..., n) of Dt, Eq. (8).First we apply the z-move, calculating the integral with
(E) We check whether the particle is sufficiently farthe help of the lookup procedure described below. Subse-

for using the free-diffusion mechanism, Eq. (6). If so, thenquently, two random gaussian x and y moves are applied
after stepping the counter (F), we apply the three gaussianwith the short time step t ; Dt. If the particle ends up out
random numbers, jgauss , to move the particle through aof the cube composed by the trap square as a base, the
time-step Dt (G).free-diffusion mechanism is applied for the next step.

If by doing so we complete the necessary number of4. Initially bound particle. When a particle is initially
short time-steps (H), we go to the beginning of the loop.bound to a reversible trap in one dimension, the probability

that it remains bound after time t ; Dt is given by [36] If there are still some short time-steps to execute, we
first check (I) if after the previous move the particle left

P(t u p) 5 [(kr 1 D)f(e2) 2 (kr 2 D)f(e1)]/2D. (15) the ddiff region and if so (J), it completes the remaining
part of the time-step in one move.

Note that the initially bound state is denoted by an asterisk. If E failed and the particle is closer to the traps than
Given a uniformly distributed random number j, the parti- zrev , then after stepping the counter (K) we check if the
cle remains bound at the end of the time-step Dt if j , chosen particle is trapped (L).
P(Dt u p) and is released otherwise. If it remains bound,

If so (M), we use a uniform random number, j, and Eq.we proceed to the next time-step without executing the x
(15) to decide whether it remains trapped (N).and y moves.

If the particle is released, the z-endpoint of the elemen- If it does, then after stepping the counter (O) and check-
tary move is found from Eq. (11) with z0 5 p. Since the ing the remaining moves to be completed (P), we pick up
probability density for an initially bound particle is [36] the corresponding chain.

If the check was negative and the particle leaves the
trap (Q), then its endpoint along z is calculated with Eq.p(z, t u p) 5

kd

2D
exp(2z2) [f(z 1 e2) 2 f(z 1 e1)], (16)

(17), while along x and y gaussian random numbers are
applied to a random point within the trap surface.

the final value, zj ; Ï4Dtzj , is given by
If the particle was not initially trapped, stage (L), we

check if it is above any trap (R) and if not, we apply the
j 2 P(t u p) 5

kd

D
ÏDt [F2(zj) 2 F1(zj)], (17) chain starting from (G) as described.

If the particle is above a vacant trap, we utilize Eqs. (9)
and (13) to calculate its endpoint (S).with F6 defined in Eq. (14) and t ; Dt.
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FIG. 3. A flow diagram of the main-loop in the simulation.

If the particle ends up trapped (T) we continue from is tabulated in [0, 3zrev] using 3nbin points [10]. The two
properly scaled functions are saved as vectors f(i) and g(i),(O). If not, the particle is moved to (x, y, zj), where zj is

calculated from Eq. (13) and x and y with random gaussian respectively. The lookup procedure then reads
numbers (U).

scale=nbin/zrev
D. The Lookup Procedure

l1=0
Lookup tables are used whenever the chosen particle is

l2=nbin*2either bound or located within the interval 0 # z0 # zrev .
The lookup algorithm below determines the elementary irc=scale*z0
trajectory endpoint for a particle using a uniform random

1 ircn=(l2+l1)/2number j. Slightly different lookup procedures are applied
to Eqs. (9), (13), and (17), as described below: ircnp=irc+ircn

1. Eq. (9): trapping an unbound particle initially at z0 .
ircnm=irc-ircn

The interval [0, zrev] is divided into nbin integration bins.
Usually, a few thousand bins produce sufficient accuracy. IF(g(ircnp)-g(irc)+f(ircnm)
In actual calculations we use nbin 5 20000. P(t u z) is evalu-

1f(ircnp).gt.xi) THENated at z 5 izrev/nbin , where i 5 1, 2, ..., nbin , and saved as
a vector P(i). Given an initial location z0 , zrev , we define l2=ircn
j 5 nbinz0/zrev and check whether j , P( j), in which case

ELSEthe particle gets trapped. Otherwise, it remains free and
we need to find its endpoint. l1=ircn (18)

2. Eq. (13): moving an unbound particle from z0 to z.
ENDIF

Since 0 # z # 2zrev , erf(z) is tabulated in the interval
[2zrev , 3zrev], using 4nbin points and e2F2(z) 2 e1F1(z) IF(l1.eq.l2-1)THEN
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c adding the gaussian moves in X and Y ity, MkP(t)l is the average number of bound particles and
MkP(t)l/N is the fraction of bound particles per the total

Z=l2/scale
bound plus free particles.

For double-site receptors, assuming independent sites,X=X+gauss()*short_time_step
the total activation probability, kP(2)(t)l, is calculated from

Y=Y+gauss()*short_time_step

...
kP(2)(t)l ; 2

M OM/2

j/251
k[Pj21(t) 1 Pj(t)]mod2l, M even. (22)

...

ELSE goto 1 Only pairs in which both sites are bound contribute to
kP(2)l. The program can report any of the four types ofENDIF
binding probabilities as output.

3. Eq. (17): freeing a bound particle. First we compare
j with P(t up), Eq. (15), to determine if the particle remains III. MONTE-CARLO VS BROWNIAN DYNAMICS
bound. This is analogous to the binding of a free particle,

Broadly speaking, Monte-Carlo (MC) and Brownian dy-item 1 above. If not, the particle is freed to a point z using
namics (BD) methods differ in the rules for moving aEq. (17). The last equation is evaluated using ‘‘inverted’’
particle: in the first method [27] one uses the infinitesimaltables; i.e., we keep the function value as the table index,
transition probability (usually on a grid) while in BD onewhereas zj is kept as its value. This speeds up the lookup
applies an exact local solution (never on a grid). Existingprocedure considerably since, instead of scanning the table,
algorithms for simulating reversible binding to receptorone just picks up the corresponding element. The x and
arrays [18, 20] represent a hybrid approach: the exacty coordinates are then determined by adding a gaussian
gaussian propagator has been applied in free space, butrandom number to a random point on the trap surface.
for the reversible binding process a MC procedure was im-
plemented.Z=inverted_table(xi)

To compare the two methods, let us consider the dissoci-
X=trap_x+(.5-rndm())*trap_side ation step with the fundamental dissociation rate parame-

ter kd . When the time-step Dt R 0, the dissociation proba-Y=trap_y+(.5-rndm())*trap_side (19)
bility 1 2 P(Dt u p) R kd Dt. For a particle correctly

X=X+short_time_step*gauss() dissociated based on the comparison with a uniform ran-
dom number, 0 # j # 1, Dt has to be really ‘‘infinitesimal.’’Y=Y+short_time_step*gauss()
To circumvent this requirement, the MC algorithms [18,
20] compared j withE. Output

During a stochastic trajectory, the program retains infor-
P(Dt u p) P exp(2kd Dt). (23)mation on the spatial location of each particle, xi(t), yi(t),

and zi(t), i 51, ..., N, which is either within the simulation
This is a solution for kr 5 0, which reduces to 1 2 kd Dtbox or bound to site j. This allows calculating the binding
in the limit that Dt R 0. Unfortunately, it is not much ofstate of each site,
an improvement because the limit kr 5 0 is never realized
in the present problem.

The exact solution for dissociation in one dimension onPj(t) 5 H0, site free

1, site occupied,
(20)

a semi-infinite line when kr ? 0 is given by Eq. (15). Its
small Dt limit is obtained by approximating f(z) R

where j 5 1, ..., M. exp(z2), giving
When the single-trajectory binding states are averaged

over an ensemble of trajectories, one obtains the individ- P(Dt u p) R [(kr 1 D) exp(e2
2) 2 (kr 2 D) exp(e2

1)]/2D.
ual-site binding probabilities kPj(t)l. Summing over all sites (24)
gives the total binding (or ‘‘activation’’) probability,

This agrees with Eq. (23) only when kr 5 0, since then
e6 5 6i Ïkd Dt, where i ; Ï21 (see Eq. (10)). But inkP(t)l ; 1

M OM
j51

kPj(t)l, (21)
receptor binding kr is typically large, so that Eq. (23) is
not even the correct short-time approximation to Eq. (15).
When Dt becomes really ‘‘infinitesimal,’’ exp(z2) R 1 1for single-site receptors. Irrespective of the site-multiplic-
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z2, so that Eq. (24) tends to 1 2 kd Dt (see Eq. (10)). ­p(x, y, z; t)
­t

(25)
This is the only limit where the expressions agree. In MC
algorithms that have not implemented geometry-sensitive
time-steps [18, 20], Dt should be severely restricted. 5D S ­2

­x2 1
­2

­y2 1
­2

­z2D p(x, y, z; t).
The problem compounds when one considers how far

from a trap a dissociating particle moves in the z direction.
The exact one-dimensional solution, Eq. (16), implies that The walls and ceiling are impermeable to particles; hence
the endpoint is chosen from a range of distances with the they are reflective. Thus the derivative of p(x, y, z; t)
probability dictated by Eq. (17). This takes into account perpendicular to these planes vanishes. The floor is reflec-
the distribution of dissociation times within Dt and the tive outside the site area (centered at (0, 0, 0)) and may
possibility of several binding cycles. The MC simulations bind a particle reversibly within the site perimeters, where
assumed that the particle is moved a fixed distance propor- the ‘‘back-reaction’’ boundary conditions [35] are imposed,
tional to ÏD Dt, which does not even seem to be the correct
average of Eq. (16). Only when Dt R 0 does this distance
vanish and the two approaches coincide. D

­p(x, y, z; t)
­z U

z50The MC recipes did not specify to where, in the xy plane,
the particle is moved. It is incorrect to move it to a fixed
point above the trap center. Rather, it should be moved 5 H0,

krp(x, y, 0; t) 2 kdP(t)/a,

if uxu or uyu . l/2

otherwise. (26)with equal probability to an arbitrary point on the trap
surface followed by gaussian moves in the x and y direc-
tions. We have found that omission of even this single This is the mixed boundary condition which complicates
detail results in wrong long-time behavior (Section V.F). the algorithm. The particle is released uniformly over the

area a 5 l 2 of the binding site. Finally, the binding proba-
bility,IV. DIRECT PROPAGATION WITH MIXED

BOUNDARY CONDITIONS

P(t) ; 1 2 ELx/2

2Lx/2
ELy/2

2Ly/2
ELz

0
p(x, y, z; t) dx dy dz, (27)

‘‘Direct propagation’’ (DP) is the solution of the partial
differential equation for the probability density, p, in space
and time. For one particle there are three spatial coordi- obeys the ‘‘rate equation’’
nates, whereas the joint probability density for N-particles
depends on 3N spatial coordinates. Unlike Brownian dy-
namics (BD) which is an off-grid method, here a 3N-dimen- dP(t)

dt
5 kr El/2

2l/2
El/2

2l/2
p(x, y, 0; t) dx dy 2 kdP(t), (28)

sional grid is required to hold the values of p at any given
time. Therefore we apply DP in the single particle case as
a check of the BD algorithm. While DP, especially with which is obtained by integrating Eqs. (25) and (26) over the
the Chebyshev propagator [22], can be extremely accurate, volume of the box. This P(t) is equivalent to the ensemble-
it is limited by the grid size to rather simple geometries averaged kP(t)l generated by the corresponding BD simu-
and just a few particles. For a single particle, it is definitely lation.
the method of choice. Due to the local nature of the boundary conditions,

Here we apply DP as a means of checking the BD algo- the operator in space is evaluated by finite differencing,
rithm. However, the DP algorithm may itself be nontrivial, whereas temporal propagation is carried out with the
due to the ‘‘mixed’’ boundary conditions on the ‘‘floor’’ Chebyshev propagator [22], which allows large time-steps
of the simulation box. These involve reversible boundary with high accuracy. A fixed grid is used in the three direc-
conditions on the surface of the site and reflective else- tions, Dx 5 Dy 5 Dz. Discretizing, x 5 i Dz, y 5 j Dz, and
where. With care, such boundary conditions may be imple- z 5 k Dz with 2nx # i # nx , 2ny # j # ny , and 1 # j #
mented using a minimal number of grid points. The algo- nz . Inside the diffusional domain,
rithm for doing so is described below and implemented
for a single trap occupying the center of the floor’s area. ­p(i, j , k; t)

­t
5 D[p(i 2 1, j , k; t) 1 p(i 1 1, j , k; t)

A. Basic Equations
1 p(i, j 2 1, k; t) 1 p(i, j 1 1, k; t)

(29)In this case of no long-range interactions a simple three-
1 p(i, j , k 2 1; t) 1 p(i, j , k 1 1; t)dimensional diffusion equation for the probability density

p(x, y, z; t) is solved, 2 6p(i, j , k; t)]/Dz2,
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whereas on its boundaries the equation is modified to take
the boundary conditions into account. First we set reflec-
tive boundaries on all sides of the diffusion box and then
modify them on the trap surface to account for back-
reaction.

B. Reflective Boundaries

Every grid point in the interior of the diffusion box has
six neighbors, leading to Eq. (29). Points on its sides have
only five neighbors. For example, points on the ceiling do
not have a k 1 1 neighbor, so that a term p(i, j , k 1 1; t)
2 p(i, j , k; t) drops from the equation, resulting in the
appropriate boundary condition there. Points along the
intersection of two boundary planes have only four neigh-
bors, whereas points in the corners of the box have three
neighbors each. The boundaries of a box thus include 6
planes, 12 lines, and 8 corners. If each of these is treated

FIG. 4. The first layer of the three-dimensional grid on the diffusionseparately, the subroutine for calculating the spatial opera-
box ‘‘floor’’ with a square binding site (black). Here nx 5 ny 5 6 and

tor requires over 100 lines of programming. nl 5 3. ‘‘Interior’’ grid points are white, ‘‘rim’’ points are light gray,
An alternative approach evaluates the operator in just ‘‘corner’’ points are gray (and larger), grid points external to the binding

site are black. Rim points are As-interior As-exterior while corner points area few lines as follows. First set dp(i,j,k) to zero. This
Af-interior Df-exterior.matrix is going to contain the result of operating on

p(i,j,k) with the discretized Laplacian. The main loop,
written in FORTRAN, may then look like

C. Mixed Reversible/Reflective Boundary Conditions

Dbar=D/dz/dz The ‘‘floor’’ of the diffusion box is a Lx by Ly rectangle
that contains a l 3 l square trap in its center (Fig. 4). Ondo 1 i=-nx,nx
this plane one has mixed boundary conditions: when either

do 1 j=-ny,ny uxu . l/2 or uyu . l/2 the floor is reflective, whereas when
both uxu and uyu are smaller than l/2 a reversible boundarydo 1 k=1,nz
condition, Eq. (26), is imposed. Suppose that Lx/2, Ly/2,

if(k.lt.nz) dp(i,j,k)=dp(i,j,k) and l/2 are divisible by Dz. Thus l/2 5 nl Dz, so that the
trap is represented by the (2nl 1 1)2 grid points for which+Dbar*(p(i,j,k+1)-p(i,j,k))
2nl # i # nl and 2nl # j # nl and k 5 1.

if(k.gt.1) dp(i,j,k)=dp(i,j,k) Out of these points, those with i 5 nl or j 5 nl are on
the boundary of the trap. Thus there are (2nl 2 1)2 interior+Dbar*(p(i,j,k-1)-p(i,j,k))
points, 4(2nl 2 1) rim points and four corner points,

if(j.lt.ny) dp(i,j,k)=dp(i,j,k) (30) (2nl 1 1)2 in total, as seen in Fig. 4. Points in the interior
represent an area Dz2 each. A rim point, which is divided+Dbar*(p(i,j+1,k)-p(i,j,k))
equally between the trap and the reflective surrounding,

if(j.gt.-ny) dp(i,j,k)=dp(i,j,k) represents a reactive area of Dz2/2, whereas a corner point
accounts for an area Dz2/4. Since the binding probability+Dbar*(p(i,j-1,k)-p(i,j,k))
per unit time is proportional to the surface area involved,

if(i.lt.nx) dp(i,j,k)=dp(i,j,k) an accurate representation of the binding reaction requires
dividing kr by the corresponding factor, 2 and 4 for rim+Dbar*(p(i+1,j,k)-p(i,j,k))
and corner points, respectively.

if(i.gt.-nx) dp(i,j,k)=dp(i,j,k) When unbinding, a particle is assumed to end with equal
probability at an arbitrary point on the trap surface. Dis-+Dbar*(p(i-1,j,k)-p(i,j,k))
cretizing, the dissociation rate coefficient for interior grid

1 continue points on the trap surface is kd 5 kd Dz2/a 5 kd/(4n2
l ),

where a 5 4(nl Dz)2 is the trap area. Subsequently, the
dissociation rate coefficient into rim points is kd/2 andIt is easy to verify that this single loop contains all the

different cases discussed above. into corner points kd/4. Since there are (2nl 2 1)2 interior
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points, 4(2nl 2 1) rim points, and 4 corner points, the total of by the initial distribution which is multiplied by the
corresponding factors so that it normalizes to unity in thedissociation rate coefficient is conserved
Af-box.

For a reversible reaction, the dissociated population den-(2nl 2 1)2kd 1 4(2nl 2 1)(kd/2) 1 4(kd/4) 5 kd . (31)
sity is released in proportion to the surface area associated
with a given grid point. Thus kd should be scaled by theIn FORTRAN, the calculation of the operator with the
multiplicity factors. The do loop in Eq. (32) is thereforemixed boundary conditions continues from Eq. (30) with
replaced bythe following loop

kr=kappar/dz
do 1 i=0,nl

kd=kappad/(2*nl)**2
do 1 j=0,nl

dPP=0.d0
kr4=kr

do 1 i=-nl,nl
kd4=kd

do 1 j=-nl,nl
if(i.eq.0.or.i.eq.nl) kd4=kd4/2

(33)
ddp=kd*PP-kr*p(i,j,1) (32)

if(j.eq.0.or.j.eq.nl) kd4=kd4/2
if(i.eq.-nl.or.i.eq.nl) ddp=ddp/2

if(i.eq.nl) kr4=kr4/2
if(j.eq.-nl.or.j.eq.nl) ddp=ddp/2

if(j.eq.nl) kr4=kr4/2
dPP=dPP-ddp

ddp=kd4*PP-kr4*p(i,j,1)
dp(i,j,1)=dp(i,j,1)+ddp

dPP=dPP-ddp
1 continue

dp(i,j,1)=dp(i,j,1)+ddp

1 continueThe variable PP is the binding probability, P(t), and dPP
the outcome of the operation on PP (its time derivative).

D. Symmetry Reduction

The geometry of the problem under investigation has a V. TESTS AND RESULTS
fourfold symmetry, namely, both xz and yz planes are
mirror planes. If the initial distribution possesses the same Testing a new program is important since even small

errors in the algorithm may lead to unexpected artifacts.symmetry, for example, when it is a point delta-function
at the center of the ceiling, the numerical effort may be Simple problems usually have several limits which can be

worked out analytically. Spherically symmetric diffusionreduced by a factor of 4. The symmetry-reduced problem
involves just Af of the box say for 0 # x # Lx/2 and 0 # is such an example [37]. The testing task becomes more

difficult for more complex problems, when analytical solu-y # Ly/2, imposing reflecting boundary conditions at
(0, y, z) and (x, 0, z). tions are either not available or describe limits which are

too trivial to be meaningful. Our approach for checking theThe first step of setting the surfaces of the quadrant
reflecting is easily achieved by replacing -nx and -ny by 0 algorithm involves three stages. First we perform internal

convergence test(s) to select the range of internal parame-in Eq. (30). The second step, of setting reversible boundary
conditions on a quarter of the trap surface, 0 # x # l/2 ters (e.g., the time-step) for which convergence is obtained.

Next, we compare the output from the new program withand 0 # y # l/2, should be done with care, since the bound
state distributes population to all four quadrants. previously developed algorithms, in this case other DP and

BD programs that tackle a simplified yet nontrivial partImagine the floor folded into four along the x and y
axes. Then every grid point not on a fold gains a multiplicity of the problem. Finally, we consider the physical behavior

of the BD solution at long times to see whether the correctof 4; i.e., it represents four coalescing grid points. Every
grid point on a fold has a multiplicity of 2 and a point at equilibrium limit is approached and whether this occurs

with a reasonable limiting behavior. In all the calculationsthe origin (on both folds) has a multiplicity of 1. In the
recombination direction this multiplicity is of no concern. described below, dimensionless time and distance units are

used in which D 5 1 and kr 5 1. The initial condition is aThe recombination rate parameter from every grid point
on the trap surface is kr/Dz. The multiplicity is taken care delta function, with all particles at the center of the ceiling.
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Dt, so that DT is only used for particles displaced sideways
from the ddiff perimeter of the array (see Fig. 2). We also
find that for the present algorithm, increasing DT by a
factor of 100 makes the computation only 1.5 times faster.
This is because many of the particles are close to the recep-
tor-array during most of the simulation time. When kd

increases, more particles escape and computer time savings
are more substantial. For kd 5 10 we find under the same
conditions that increasing DT by a factor of 100 results in
a 2.5 times faster computation.

B. Comparison with One-Dimensional Dynamics

The accuracy of treating the many-body aspects of the
problem can be evaluated from a comparison with previous
one-dimensional BD results. When the site covers the

FIG. 5. Convergence of the time-dependent binding probability with whole floor and the initial distribution is uniform in the
respect to the time-step as determined by arev , Eq. (8). In the present xy plane, the problem becomes one-dimensional (in z) and
case ddiff 5 zrev so that Dt 5 DT. Calculated is the 1W single-site, single- thus solvable with the previous one-dimensional version
particle binding probability for a 5 3 5 site on a 10 3 10 floor, where

of the program [13]. Since here the initial distribution is al 5 5, l 9x 5 l 9y 5 10, Lz 5 20, and kd 5 0.01. The particle is initially at
point (rather than a planar) delta-function, we need to(0, 0, 20). In all of our calculations kr 5 1 and D 5 1.
take a very narrow ‘‘pipe’’ (Lx , Ly ! Lz) in order for its
solution to approach the one-dimensional case. Now the
boundary conditions are simpler than in the previous test;

A. Convergence Tests they are homogeneous, not ‘‘mixed.’’ However, many-
particle aspects come into play since we can now haveThe most important convergence test concerns the
N . 1.choice of the time-step. When the boundary condition on

Figure 7 compares three-dimensional BD in a narrowthe floor is homogeneous (one binding site covering the
pipe (symbols) with our previous one-dimensional BD sim-whole floor) and the initial distribution uniform in the xy
ulations [13] (lines). The good agreement demonstratedplane the problem reduces to one dimension (z). If, in
for two rather different values of kd leads us to believeaddition, the ceiling is infinitely far away the algorithm

becomes exact because it samples from the analytic semi-
infinite reversible solution. In this limit the time-step may
be arbitrarily large. When the ceiling is a finite distance
from the floor the time-step is restricted by the requirement
that a particle does not cross this distance in a single hop
[13]. When the boundary condition on the floor is inhomo-
geneous, the time step is further limited to avoid taking
big jumps across inhomogeneous boundaries parallel to
the floor.

(i) Optimizing arev . In the present algorithm the small
time-step, Dt, is related to the inhomogeneity repeat length
(l 9x or l 9y) by the parameter arev in Eq. (8). Thus convergence
depends on the choice of arev . This is tested in Fig. 5 for
a single particle and a single site covering Af the floor area.
For arev . 6 the calculation is fully converged. Since this
was the observation also for other trap geometries, we use
arev 5 7 as the default value in our calculations. When
applicable, we also set adiff 5 7 in Eq. (1).

FIG. 6. The long-time decay of the average binding probability to a(ii) Time-step independence. We next test the accuracy
receptor array without walls. Here l 5 l 9x 5 l 9y 5 10, Lx 5 Ly 5 100, andand efficiency with respect to the choice of the large time-
Lz 5 10. Circles, triangles, diamonds, and squares are from Brownian

step, DT. As Fig. 6 shows, with the above choice of arev simulations with DT 5 1, 100, 500, and 1000 time units, respectively.
and adiff the 2W simulations are independent of DT. In Dashed line is a 1/t asymptotic decay. The ‘‘inaccurate version is discussed

in Section V.F.’’this example the time-step above the array is restricted to
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FIG. 7. Three-dimensional Brownian simulations in a narrow pipe
(circles) are compared with one-dimensional simulations (solid lines, from
Fig. 7 of Ref. [13]) for the two indicated values of kd . The pipe involves
a single 0.001 3 0.001 site covering the whole floor of a cell of height
Lz 5 250. P(t) is averaged over about 5000 trajectories of N 5 100 par-
ticles.

that the many-body effect is described correctly in the
new three-dimensional BD program. Our one-dimensional
version has been previously validated by comparison with
MC [27] and analytical one-dimensional solutions [10, 11].

FIG. 8. Comparison of Brownian simulations (solid lines) with direct
The comparison with MC Ref. [11, Fig. 2], showed reason- propagation results (dashed lines) for the geometry of Fig. 5 and the two
able agreement, but only up to intermediate times (ap- indicated values of kd . The latter method used a 21 3 21 3 81 symmetry-
proached using logarithmic time-steps). Due to increasing reduced grid with nx 5 ny 5 20, nz 5 81, and nl 5 10; see Section IV.

errors in the MC routine, it was impossible to propagate
it any further in order to obtain the asymptotic solution.
The long-time behavior for different kd values could only Despite the small difference between the two calcula-
be obtained with the BD routine. tions, when each is subtracted from its corresponding Peq

limit a three-digit agreement is obtained (lower panel).
C. Comparison with Direct Propagation The exponential decay of the DP calculation, performed

in double-precision accuracy, continues for many moreWe can estimate the accuracy of treating the ‘‘mixed,’’
decades. It is governed by the lowest eigenvalue, l, ofinhomogeneous boundary conditions on the cell’s floor by
the diffusion operator which has been calculated from thecomparing DP and BD calculations for a single particle in
slopes of these curves and collected in Table I. The compar-a box containing one site occupying Af of the floor area.
ison in Fig. 8 is limited to three digits by the accuracy ofBecause of the spatial restriction on the diffusion space,
the BD simulation, which depends on the square root of1W, the binding probability [P(t) for DP, kP(t)l for BD]
the number of stochastic trajectories, nt . Since the N parti-increases to an equilibrium plateau. Figure 8 (upper panel)

shows a difference of no more than 1–2% between the two
methods. It is probably due to the finite grid size in the

TABLE IDP method. Although DP has a much higher (double-
precision) accuracy irrespective of Dt, this refers to the Approach to Equilibrium in the Single-Site
discrete operator defined on a given spatial grid. The grid Single-Particle Case
size determines how well this approximates the continuum

kd Peq Eq. (35) l Eq. (36)limit, which is simulated by BD. The figure is also a check
on the correct procedure for constructing the diffusion

0.1 0.111 6 0.001 0.11111 7.80 3 1023 1.15 3 1022

operator in the DP method; without the proper scaling of 0.01 0.555 6 0.001 0.55555 2.56 3 1023 8.7 3 1023

rim and corner points described in Section IV, the discrep-
Note. Data (Peq and l) from Fig. 8.ancy increases to about 6%.
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cles are nearly independent, the statistical noise actually The 2W case does not approach equilibrium. Here the
binding probability decays to zero as shown in Fig. 6. For ascales as ÏNnt , where Nnt is the total number of single-

particle trajectories. single site in an infinite d-dimensional space the asymptotic
decay of the binding probability follows the t2d/2 law [5,

D. The Ultimate Equilibrium Limit 11, 12, 38]. It is plausible (although, again, without rigorous
proof) that a similar asymptotic decay holds also in theIn the 1W case of reflecting walls surrounding the recep-
many-site case. This follows because at long times particlestor array, the system approaches an ultimate equilibrium
diffuse to large distances from the receptor-array. From alimit. We can use this limit as yet another check on the
distance, the whole array looks like a single site. Sincealgorithm. For M binding sites and N particles, the law of
diffusion here is in between two planes, it should appearmass-action predicts that Peq , the binding probability for
two-dimensional at long times, leading to an asymptoticany one of the M sites at equilibrium, is given by
1/t decay. This is indeed observed in the simulation shown
in Fig. 6 (dashed line).Peq 5 cfreeKeq/(1 1 cfreeKeq). (34)

Here cfree ; [N 2 (M 2 1)Peq]/V is the concentration of F. An Inaccurate Version
free particles in the volume V 5 LxLyLz . The free particles

In order to see how meaningful these checks are, anare not bound to any of the other M 2 1 sites (except
‘‘inaccurate version’’ of the program has been produced.the one site under consideration). Keq 5 akr/kd is the
This version contains small modifications of the accurateequilibrium recombination constant for each site. Substi-
version which alter the x, y coordinates of the releasedtuting, one obtains the following quadratic equation for Peq
particle. Specifically, a dissociated particle is moved to a
single point above the trap center (rather than uniformly(M 2 1)P 2

eq 2 (V/Keq 1 N 1 M 2 1)Peq 1 N 5 0. (35)
to any point on its surface) and without adding two
gaussian steps in the x and y directions. This saves fourAlthough for the present problem there is no rigorous
random numbers (cf. discussion following Eq. (17)), butproof for the law of mass-action, thus of Eq. (35), it is
makes this version noticeably less accurate than the cor-quite plausibly exact.
rect version.In the single-particle single-site case of Fig. 8, Table I

An example is shown in Fig. 6: after some time theshows that the equilibrium limit of the BD simulations
binding probability is overestimated by the inaccurate ver-indeed agrees with Eq. (35). To check the situation in the
sion. The reason is that keeping the dissociated particlemany-particle multi-site 1W case, we calculated kP(t)l for
above the trap from which it was just released increasesdifferent values of kd and N (see Fig. 9). The solution of
its rebinding probability. In comparison, the accurate treat-Eq. (35), dashed lines, agrees nicely with the asymptotic
ment allows for lateral motion during the elapsed time.limit of our BD simulations. The results in Fig. 9 suggest
This added motion may bring the particle to a locationthat both Eq. (35) is exact and the BD algorithm is correct.
above an occupied trap or an inert surface, decreasing
its recombination probability. We have checked that theE. The Approach to Equilibrium
‘‘inaccurate version’’ produces similar errors also for the

In the 1W case the ultimate approach to equilibrium is examples in Figs. 8 and 9. This demonstrates how seemingly
exponential, exp(2lt). This is due to the reflective walls; innocent changes in the algorithm may lead to sizeable
l is the lowest eigenvalue of the diffusion operator within errors.
the finite volume involved. In one dimension [13] it is
possible to derive a rigorous expression and show that it
reduces approximately to VI. CONCLUSION

The present work detailed the theory and practice of1
l

P
1

cakr 1 kd
1

L2
z

Df2 . (36)
constructing a three-dimensional Brownian simulation al-
gorithm for many-particle reversible binding to a receptor
array. The algorithm combines geometry-sensitive time-This resembles a familiar recipe for the effective rate-

constant of serial processes, which for the present problem steps with analytical local solutions to produce an accurate
representation of the diffusion equations depicting revers-involve diffusion to the site and reaction at its surface. By

a similar logic one derives the steady-state rate coefficient ible binding under the given geometrical constraints.
Checking and debugging such an algorithm is quite de-for surface-bound receptors [3]. For the problem treated in

Fig. 8, N 5 1 so that Eq. (36) is only a rough approximation manding. One must search for nontrivial limits of the prob-
lem which are either known analytically or solvable by(Table I) which cannot be used as a check on the algorithm.
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FIG. 9. The fraction of bound particles as obtained from a Brownian simulation of a square receptor-array with walls. It involves 5 3 5 array
of M 5 25 sites, each a 10 3 10 square on a 100 3 100 floor. Thus Lx 5 Ly 5 100, Lz 5 10, l 5 10, and l 9x 5 l 9y 5 20. Each panel refers to a different
kd value, as indicated, for which simulations with N 5 1, 10, 100, and 1000 particles were performed (solid lines). The dashed lines are the equilibrium
limits, MPeq/N, with Peq from Eq. (35).

other algorithms. The present algorithm has been sub- on proton recombination to excited dye molecules has
been remeasured with an enhanced-resolution time-corre-jected to an extensive series of such tests.

The algorithm has many potential applications, from the lated single-photon counting apparatus [39]. The new data
show a switch-over into an asymptotic power-law behavior.action of neurotransmitters in the synaptic gap between

nerve cells to modelling reversible attachment to chroma- In the more complicated case of receptor arrays, the range
of expected physical behaviors is yet unexplored. We hopetography columns in analytical chemistry. The question is

whether the added accuracy and flexibility is really essen- to use the Brownian dynamics routine for mapping out
the possible physical behaviors.tial? Given the quality of the present experimental data,

perhaps less sophisticated Monte-Carlo routines are suffi-
cient. ACKNOWLEDGMENTS

We think a moral can be learned from our experience
Work supported by The Israel Science Foundation, administered byin solution-phase simulations of reversible reactions [11].

The Israel Academy of Sciences and Humanities. The Fritz Haber Re-First, the accurate simulations allowed for theoretical de-
search Center is supported by the Minerva Gesellschaft für die Forschung,

velopment; approximate solutions could be compared with Munich, Germany.
the simulation results. By using less sophisticated Monte-
Carlo routines it was impossible to reach the asymptotically REFERENCES
long-time behavior which distinguishes between the vari-
ous approximations. The theory for reversible binding to 1. H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977).

receptor arrays is at its infancy. The availability of a well- 2. C. DeLisi and F. W. Wiegel, Proc. Nat. Acad. Sci. USA 78, 5569 (1981).
defined model which can be solved numerically with suffi- 3. D. Shoup and A. Szabo, Biophys. J. 40, 33 (1982).
cient accuracy is the only meaningful test for such theories 4. O. G. Berg, Chem. Phys. 31, 47 (1978).
because experiment might contain additional complicat- 5. N. Agmon and A. Szabo, J. Chem. Phys. 92, 5270 (1990).
ing factors. 6. P. Jonas and N. Spruston, Curr. Opinion Neurobiol. 4, 366 (1994).

Second, our solution-phase simulations predicted a 7. K. L. Magleby and C. F. Stevens, J. Physiol. 223, 173 (1972).
switch-over into an asymptotic power-law phase in the 8. J. C. Eccles and J. C. Jaeger, Proc. R. Soc. London Sect. B 148,

38 (1958).approach to equilibrium. Such behavior has not been ob-
9. H. Korn and D. S. Faber, Trends Neurosci. 14, 439 (1991).served before due to the relatively low resolution of experi-

mental techniques. Following our prediction, the pH effect 10. A. L. Edelstein and N. Agmon, J. Chem. Phys. 99, 5396 (1993).



BROWNIAN SIMULATION 275

11. N. Agmon and A. L. Edelstein, J. Chem. Phys. 100, 4181 (1994). 26. A. J. Bard et al., J. Anal. Chem. 63, 1282 (1991).
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